Role of Direct Oral Anticoagulants in the Treatment of Cancer-Associated VTE

Tuesday, November 6, 2018, 12:00PM ET

Guest Discussant: Marc Carrier, MD, MSc, FRCPC

Moderators: Diane Wirth, ANP, CACP; Michael Streiff, MD; Sara Vazquez, PharmD, BCPS, CACP
Presenters

Marc Carrier, MD, MSc, FRCPC
Associate Professor, Department of Medicine
University of Ottawa
Senior Scientist, Clinical Epidemiology Program
Ottawa Hospital Research Institute

Michael B. Streiff, MD
Professor of Medicine & Pathology
Johns Hopkins University
Medical Director, Johns Hopkins AC Management
Service & Outpatient Clinics
Johns Hopkins Comprehensive Hemophilia
Treatment Center
Baltimore, MD

Diane Wirth, ANP, CACP
Manager Heart Failure Program
Grady Memorial Hospital
Atlanta, GA

Sara Vazquez, PharmD
Adjunct Assistant Professor of Pharmacology
University of Utah College of Pharmacy
Clinical Pharmacist
University of Utah Health Care Hospitals & Clinics
Salt Lake City, UT
Disclosures

• Marc Carrier
 • Pfizer
 • Bayer
 • Leo Pharma
 • Bristol Meyer Squibb

• Diane Wirth
 • Janssen Pharmaceutical
 • Portola Pharmaceutical
Definitions/Abbreviations

• International Society of Thrombosis and Hemostasis (ISTH)
• Scientific and Standardization Committee (SSC)
• Cancer associated Thrombosis (CAT)
• Randomized Clinical Trials (RCT)
• Cancer
 • Dx within previous 6 months, recurrent, regionally advanced, or metastasized, tx within past 6 months or hematological cancer not in remission
• Direct oral anticoagulant (DOAC)
 • Apixaban (Eliquis)
 • Dabigatran (Pradaxa)
 • Edoxaban (Savaysa)
 • Rivaroxaban (Xarelto)
Cancer and clotting

- Risk is much higher for VTE
 - 4-7 fold increase risk of developing VTE
- Challenging to manage
 - bleeding
 - drug interaction
 - compliance with LMWH
 - vitamin K antagonist failures
 - nausea/vomiting with treatments
Factors that contribute to VTE in cancer patients

• Pro-coagulant and inflammatory cytokines
• Immobility and venous external compression
• Vessel damage
 • chemotherapy-induced interleukin
 • tumor necrosis factor
 • indwelling catheters
• Concomitant genetic hyper-coaguable states
• Chemo therapy agents

Cancer with high rates of VTE

- Pancreatic
- Hematologic
- Lung
- GI
- Brain

Review Questions

• What is the role of DOAC’s in cancer associated VTE?
• Which patients have had the best results with DOAC’s?
• Are there patients that LMWH is a safer therapy for?
Study Selection for Review

https://doi.org/10.1016/j.thromres.2018.02.144 A.Li, et al
RCT for DOAC vs LMWH

Hokusai Cancer Study (Raskob) 1046 patients
Edoxaban 60 mg daily or dalteparin 200 IU/KG daily
month 1 then 150 IU/KG month 2-12 (lead in with parenteral)

Select-D (Young) 406 patients
Rivaroxaban 15 mg bid x 21 days then 20 mg daily or
200 IU/KG daily month 1 then 150 IU/KG month 2-6
Forest plots of relative risks (RRs) for pooled outcome comparisons between DOAC and LMWH from randomized controlled trials

(A) VTE recurrence by 6-month

(B) major bleeding by 6-month

https://doi.org/10.1016/j.thromres.2018.02.144. A. Li et al.
Forest plots of relative risks (RRs) for pooled outcome comparisons between DOAC and LMWH from randomized controlled trials

(C) Clinically Relevant Non-Major Bleeding (CRNMB) by 6-month

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>DOAC Events</th>
<th>Total</th>
<th>LMWH Events</th>
<th>Total</th>
<th>Weight</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raskob 2017</td>
<td>64</td>
<td>522</td>
<td>43</td>
<td>524</td>
<td>57.6%</td>
<td>1.49 [1.04, 2.16]</td>
</tr>
<tr>
<td>Young 2017</td>
<td>25</td>
<td>203</td>
<td>6</td>
<td>203</td>
<td>42.4%</td>
<td>4.17 [1.75, 9.94]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>725</td>
<td></td>
<td>727</td>
<td></td>
<td>100.0%</td>
<td>2.31 [0.85, 6.28]</td>
</tr>
</tbody>
</table>

Total events
- 89
- 49

Heterogeneity: $\text{Tau}^2 = 0.42; \text{Chi}^2 = 4.60, \text{df} = 1 (P = 0.03); I^2 = 78\%$

Test for overall effect: $Z = 1.64 (P = 0.10)$

(D) Overall Mortality by 6-month

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>DOAC Events</th>
<th>Total</th>
<th>LMWH Events</th>
<th>Total</th>
<th>Weight</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raskob 2017</td>
<td>140</td>
<td>522</td>
<td>127</td>
<td>524</td>
<td>69.1%</td>
<td>1.11 [0.90, 1.36]</td>
</tr>
<tr>
<td>Young 2017</td>
<td>48</td>
<td>203</td>
<td>54</td>
<td>203</td>
<td>30.9%</td>
<td>0.89 [0.63, 1.24]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>725</td>
<td></td>
<td>727</td>
<td></td>
<td>100.0%</td>
<td>1.03 [0.85, 1.26]</td>
</tr>
</tbody>
</table>

Total events
- 188
- 181

Heterogeneity: $\text{Tau}^2 = 0.00; \text{Chi}^2 = 1.18, \text{df} = 1 (P = 0.28); I^2 = 15\%$

Test for overall effect: $Z = 0.33 (P = 0.74)$
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Intervention</th>
<th>DOAC</th>
<th>LMWH</th>
<th>Endpoints (time)</th>
<th>DOAC</th>
<th>LMWH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raskol</td>
<td>RCT</td>
<td>Number (follow-up)</td>
<td>522 (12 mo)</td>
<td>524 (12 mo)</td>
<td>VTE (6 mo)</td>
<td>6.5% (45/822)</td>
<td>8.8% (40/452)</td>
</tr>
<tr>
<td>2017 [11]</td>
<td></td>
<td>Patient age, gender</td>
<td>64, 53% male</td>
<td>64, 50% male</td>
<td>MB (6 mo)</td>
<td>0.6% (29/522)</td>
<td>3.2% (17/524)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA type, stage</td>
<td>11% hemi, 53% met</td>
<td>11% hemi, 53% met</td>
<td>CRNMB (6 mo)</td>
<td>12.3% (64/522)</td>
<td>8.8% (43/524)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VTE type, history</td>
<td>32% incidental, 9% hxs</td>
<td>33% incidental, 12% hxs</td>
<td>Death (6 mo)</td>
<td>12.9% (10/222)</td>
<td>24.2% (127/524)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drug name (duration)</td>
<td>Edinonan (6.9 mo)</td>
<td>Dalteparin (6.0 mo)</td>
<td>VTE (12 mo)</td>
<td>7.9% (41/522)</td>
<td>13.2% (209/524)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number (follow-up)</td>
<td>203 (6 mo)</td>
<td>203 (6 mo)</td>
<td>MB (12 mo)</td>
<td>6.9% (36/522)</td>
<td>4.0% (11/274)</td>
</tr>
<tr>
<td>2017 [12]</td>
<td>RCT</td>
<td>Patient age, gender</td>
<td>67, 54% male</td>
<td>67, 48% male</td>
<td>CRNMB (12 mo)</td>
<td>14.6% (77/522)</td>
<td>11.1% (59/524)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA type, stage</td>
<td>59% met</td>
<td>59% met</td>
<td>Death (12 mo)</td>
<td>39.5% (206/522)</td>
<td>36.6% (192/524)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VTE type, history</td>
<td>54% incidental</td>
<td>52% incidental</td>
<td>VTE (6 mo)</td>
<td>3.9% (8/203)</td>
<td>0.9% (18/203)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drug name (duration)</td>
<td>Rivanol (52% at 6 mo)</td>
<td>Dalteparin (52% at 6 mo)</td>
<td>MB (6 mo)</td>
<td>5.4% (11/203)</td>
<td>3.0% (6/203)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number (follow-up)</td>
<td>146 (12 mo)</td>
<td>223 (12 mo)</td>
<td>CRNMB (6 mo)</td>
<td>12.3% (25/203)</td>
<td>3.0% (6/203)</td>
</tr>
<tr>
<td>2017 [19]</td>
<td>Cohort</td>
<td>Patient age, gender</td>
<td>69, 52% male</td>
<td>68, 47% male</td>
<td>Death (6 mo)</td>
<td>2.0% (40/203)</td>
<td>2.0% (40/203)</td>
</tr>
<tr>
<td></td>
<td>(record)</td>
<td>CA type, stage</td>
<td>8% hemi, 14% GI CA</td>
<td>10% hemi, 29% GI CA</td>
<td>VTE (12 mo)</td>
<td>1.4% (5/146)</td>
<td>1.4% (2/146)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VTE type, history</td>
<td>28% hxs</td>
<td>12% hxs</td>
<td>MB (12 mo)</td>
<td>1.4% (2/146)</td>
<td>1.4% (2/146)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drug name (duration)</td>
<td>Rivanol (5.0 mo)</td>
<td>Dalteparin (5.0 mo)</td>
<td>CRNMB (12 mo)</td>
<td>12.3% (25/203)</td>
<td>3.0% (6/203)</td>
</tr>
<tr>
<td>2017 [10]</td>
<td>Cohort</td>
<td>Patient age, gender</td>
<td>48 (10.4 mo)</td>
<td>23 (< 6 mo)</td>
<td>NR (14/141)</td>
<td>4.0% (7/146)</td>
<td>34.7% (50/141)</td>
</tr>
<tr>
<td></td>
<td>(record)</td>
<td>CA type, stage</td>
<td>62, 50% male</td>
<td>62, 39% male</td>
<td>VTE (12 mo)</td>
<td>2.1% (1/48)</td>
<td>12.0% (3/33)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VTE type, history</td>
<td>33% met</td>
<td>70% met</td>
<td>MB (6 mo)</td>
<td>5.3% (3/48)</td>
<td>12.0% (3/33)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drug name (duration)</td>
<td>Rivanol (9.7 mo)</td>
<td>Enoxaparin (4.5 hr)</td>
<td>NR (14/141)</td>
<td>31.6% (50/141)</td>
<td>34.7% (50/141)</td>
</tr>
<tr>
<td>2017 [20]</td>
<td>Cohort</td>
<td>Patient age, gender</td>
<td>107 (6 mo)</td>
<td>179 (6 mo)</td>
<td>VTE (6 mo)</td>
<td>2.8% (3/107)</td>
<td>6.1% (11/179)</td>
</tr>
<tr>
<td></td>
<td>(record)</td>
<td>CA type, stage</td>
<td>62, 52% male</td>
<td>59, 51% male</td>
<td>MB (6 mo)</td>
<td>2.8% (3/107)</td>
<td>1.1% (2/179)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VTE type, history</td>
<td>20% home, 68% met</td>
<td>20% home, 76% met</td>
<td>CRNMB (6 mo)</td>
<td>3.9% (10/107)</td>
<td>4.5% (9/197)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drug name (duration)</td>
<td>Rivanol (5.0 mo)</td>
<td>Dalteparin (5.0 mo)</td>
<td>Death (6 mo)</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>2017 [21]</td>
<td>Cohort</td>
<td>Patient age, gender</td>
<td>30 (11.6 mo)</td>
<td>123 (11.6 mo)</td>
<td>VTE (12 mo)</td>
<td>6.7% (2/30)</td>
<td>8.3% (10/123)</td>
</tr>
<tr>
<td></td>
<td>(record)</td>
<td>CA type, stage</td>
<td>62, 43% male</td>
<td>58, 44% male</td>
<td>MB (12 mo)</td>
<td>11.3% (3/28)</td>
<td>10.6% (13/123)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VTE type, history</td>
<td>24% home, 31% met</td>
<td>27% home, 54% met</td>
<td>CRNMB (12 mo)</td>
<td>6.7% (2/30)</td>
<td>7.9% (9/123)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drug name (duration)</td>
<td>Enoxaparin (NR)</td>
<td>Enoxaparin (NR)</td>
<td>Death (12 mo)</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Segmentum</td>
<td>Article (record)</td>
<td>Number (follow-up)</td>
<td>Patient age, gender</td>
<td>CA type, stage</td>
<td>VTE type, history</td>
<td>Drug name (duration)</td>
<td>vTE (to mo)</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>--------------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>2017 [33]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phelps</td>
<td>100 (25 mo)</td>
<td>60, 100% female</td>
<td>100% GYN, 35% met</td>
<td>27% hx</td>
<td>Riva, NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2016 [34]</td>
<td>58 overall</td>
<td>32% heme</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hummert</td>
<td>85 (NR)</td>
<td>65, 54% male</td>
<td>53% met overall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rahman</td>
<td>23 (NR)</td>
<td>149 (NR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seo</td>
<td>78 (NR)</td>
<td>111 (NR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ohlmann</td>
<td>360 (NR)</td>
<td>431 (6.8 mo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sheiff</td>
<td>660 (5.6 mo)</td>
<td>707 (5.6 mo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

https://doi.org/10.1016/j.thromres.2018.02.144. A. Li et al.
The results....

• Over 5000 CAT patients reviewed between RCT and observational studies comparing DOAC/LMWH
 • Efficacy
 • Overall lower rates of recurrence of VTE in DOAC patients (absolute risk -3%, -6% to 0%)
 • Safety
 • Higher risk of major and clinically relevant non major bleeding in DOAC patients (absolute risk +2%, 0%--+4%)
 • Compliance
 • Generally better compliance in DOAC patients 15% in Hokusai-Cancer vs 4% in LMWH group

Shared Decision Making

- Patient preference
- Values
- Concerns
 - Will DOAC interfere with their cancer treatment?
 - Are they more concerned about efficacy or bleeding

Patients highest risk for bleeding on DOAC based on RCT’s and observational studies

- Gastrointestinal cancer
- Genitourinary cancer

https://doi.org/10.1016/j.thromres.2018.02.144. A. Li et al.
Cautions

• No validated bleeding risk tools for cancer patients receiving DOAC’s

• Edoxaban and rivaroxaban are the only two DOAC’s in RCT’s

• Renal function is important in both DOAC and LMWH therapy, there is no reduced dose for DOAC’s for renally impaired VTE treatment
Guidance Statement

• Shared decision making
 • Individualize plan for each patient

• Suggest DOAC’s if the following is true
 • Low bleeding risk
 • No drug-drug interactions

• Suggest LMWH’s if the following is true
 • High bleeding risk
 • Luminal GI cancers
 • GI mucosal abnormalities
 • GU tract cancers
 • Nephrostomy tubes