Anticoagulation considerations in the acute care setting

William Dager, Pharm.D., BCPS
FCCP, FCSHP, FCCM, FASHP, MCCM
Cardiovascular Pharmacist Specialist, UC Davis Medical Center
Clinical Professor of Pharmacy, UC San Francisco School of Pharmacy
Clinical Professor of Medicine, UC Davis School of Medicine
Clinical Professor of Pharmacy, Touro School of Pharmacy
I have no relationships, financial or otherwise, or any other form of conflicting interest to disclose relating to the content of this presentation.
Challenges Faced in the Acute Care Setting

- Has the risk for thrombosis or bleeding changed.
 - Environment/Practitioner changes: ICU ↔ Ward
- Starting AC therapy – developing a long term plan from the start
- VTE Prophylaxis
- Temporary Anticoagulation – mechanical devices (ECLS, Impella) or during procedures;
- To measure, or not to measure – Changing Management Targets
- Acute events that suddenly change your path (HIT, Acute Hypercoag/Hypocoag states --- Unique Dosing/Management
- Peri- and Intraoperative management
- Emergent reversal of major/life threatening bleeds
- Educating the patient
- Meeting Mandates
Implementing and Assessing Anticoagulation Therapy

Patient/Condition

Prophylaxis
UFH
LMWH
DTI
ASA
ANTI-PLATELET
Warfarin
DOAC’s

Treatment

Devices

Thrombosis
Bleeding
ADE
Costs

Outcomes

aPTT
Hgb
INR
Plt
Timing

Ordering

Dosing
Interactions
Dual-Triple therapy
Epidural/Spinal
Baseline Labs

Preparation

Administration

Discharge

Administration Schedule
(q___ “hr”)

Order Sets
Best Practice
Alerts

Admit

Pump Settings
Compatibility

IV Admixture
Process
Release to
Pyxis

Monitoring

aPTT = activated partial thromboplastin time; Hgb = hemoglobin;
INR = International Normalized Ratio; Plt = platelets.
Utilizing Informatics

<table>
<thead>
<tr>
<th>Date:</th>
<th>04/10</th>
<th>04/11</th>
<th>04/12</th>
<th>04/13</th>
<th>04/14</th>
<th>04/15</th>
<th>04/16</th>
<th>04/17</th>
<th>04/18</th>
<th>04/19</th>
<th>04/20</th>
<th>04/21</th>
<th>04/22</th>
<th>04/23</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Day:</td>
<td>0000</td>
</tr>
<tr>
<td>vWarfarin tab</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Heparin</td>
<td></td>
</tr>
<tr>
<td>Dose (units/hr)</td>
<td>1900</td>
<td>+1400</td>
<td>+1400</td>
<td>+1400</td>
<td>+1400</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heparin inj</td>
<td></td>
</tr>
<tr>
<td>Heparin 5,000 unit/0.5 mL Syrg(Units)</td>
<td>5,000</td>
<td>15,000</td>
<td>15,000</td>
<td>15,000</td>
<td>15,000</td>
<td>15,000</td>
<td>5,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interactive Class</td>
<td></td>
</tr>
<tr>
<td>Fluconazole 400 mg/200 mL Pgbk(mg)</td>
<td>400</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Fluconazole Tab(mg)</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Metronidazole 500 mg/100 mL Pgbk(…</td>
<td>1,000</td>
<td>1,500</td>
<td></td>
</tr>
<tr>
<td>Reversal Agents</td>
<td></td>
</tr>
<tr>
<td>Vit K Inj</td>
<td></td>
</tr>
<tr>
<td>Vit K Inj 10</td>
<td></td>
</tr>
<tr>
<td>Vit K po</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Labs</td>
<td></td>
</tr>
<tr>
<td>INR</td>
<td>3.79</td>
<td>3.62</td>
<td>1.94</td>
<td>1.68</td>
<td>1.52</td>
<td>1.58</td>
<td>1.77</td>
<td>1.78</td>
<td>1.58</td>
<td>1.54</td>
<td>1.63</td>
<td>1.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTT</td>
<td>95.1</td>
<td>94.4</td>
<td>90.3</td>
<td></td>
</tr>
<tr>
<td>wWBC</td>
<td>11.6</td>
<td>12.0</td>
<td>12.3</td>
<td>14.8</td>
<td>14.0</td>
<td>13.3</td>
<td>12.1</td>
<td>10.3</td>
<td>11.0</td>
<td>10.6</td>
<td>12.9</td>
<td>14.8</td>
<td>11.8</td>
<td></td>
</tr>
<tr>
<td>Hgb</td>
<td>9.4</td>
<td>8.8</td>
<td>8.5</td>
<td>8.2</td>
<td>7.8</td>
<td>9.1</td>
<td>9.4</td>
<td>9.7</td>
<td>11.2</td>
<td>11.5</td>
<td>10.4</td>
<td>9.7</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td>Hct</td>
<td>28.2</td>
<td>26.1</td>
<td>25.2</td>
<td>24.2</td>
<td>23.0</td>
<td>26.8</td>
<td>28.5</td>
<td>29.1</td>
<td>32.7</td>
<td>33.7</td>
<td>30.9</td>
<td>28.7</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td>Platelets</td>
<td>262</td>
<td>262</td>
<td>240</td>
<td>234</td>
<td>223</td>
<td>219</td>
<td>222</td>
<td>229</td>
<td>234</td>
<td>221</td>
<td>170</td>
<td>142</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>Scr</td>
<td>3.48</td>
<td>3.39</td>
<td>3.31</td>
<td>3.40</td>
<td>3.39</td>
<td>3.59</td>
<td>3.51</td>
<td>3.65</td>
<td>3.66</td>
<td>3.46</td>
<td>3.58</td>
<td>5.06</td>
<td>5.95</td>
<td></td>
</tr>
<tr>
<td>Albumin</td>
<td></td>
<td>2.6</td>
<td>2.0</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Total Bili</td>
<td></td>
<td>0.8</td>
<td>2.8</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Temp

![Temperature Graph](image)

Drains - Color

Drainage Characteristics/Odor (V/Vo...
VTE: Treatment Approach

- **Acute treatment:** *Adequate AC while waiting for Dx assessment*

- **Lytic Therapy:** *Massive PE, Thrombectomy, Catheter Directed…*

- **Special Populations:** *Organ Failure, Recent ICH/Bleed, No IV access…*

- **No need to be in Hospital:** *Develop Long Term Plan, Coverage, Patient Acceptance*

- **Agent Selection:** *Can be revised as necessary, potential for complications*

AC = anticoagulation
IVC = inferior vena cava
Initiating Anticoagulation

- Efficacy and Safety – Multiple Choices & ↑ Potential Confusion
- Goals/Length of therapy
 - Prophylaxis vs Treatment
- Acute vs Chronic
- Total Plan: Finish what you start…
- Complex Patients
 - May not typically included in trials (ICU, High Risk Bleeding…)
 - Need to modify typical target?
 - Presence or planned invasive procedures
 - High bleeding Risk: IVC?
Special Populations: “On The Fence” Dosing Decisions

- Obesity
- Renal Insufficiency
- Hepatic Failure
- Pregnancy
- Pediatrics/Neonates
- Cancer
- Mechanical Valves
- Advanced Age
- Hypercoagulable State
- Concurrent Coagulopathy
- ICU setting (Pressors, Heart Failure, Open Wounds, ECMO…)

Anticoagulation Indication
- Treatment
- Prophylaxis
- Acute Care plans

Many excluded from clinical trials
Practice Pearl: Dosing/Lab Draw Times

When setting times for Dosing and drawing labs – consider:

- **Shift Change** – Avoid ordering much between 6:00 and 8:00
- Let the patient get rest at night
- Batch labs when possible
- One time orders placed on previous days may get missed

Also: Just because the dose was removed (PYXIS) doesn’t mean it was swallowed
- If suspected – add to order “Nurse to watch patient swallow”
When bleeding concerns in the ICU are present
Unfractionated Heparin: Monitoring

Monitoring (aPTT/anti-Xa)
- Time post bolus: 6-8 hr
- No bolus: 4-6 hr
- Kearon et al Arch Intern Med 1998
 - Warfarin: INR ↑ 1.0 = ~16 sec aPTT ↑

Heparin Resistance: (No Change with ↑Result)
- aPTT/Anti-Xa; Antithrombin, FVIII, Fibrinogen

Pearl: Get good information and know the limitations of it
- Set it up to be useful
Know your lab methods: aPTT Reagent and Instrument Variation

Sigma CS-190
MLA-1600
STA
CA-6000
MDA-180
BCT

aPTT seconds

25 50 75 100 125 150 175
ACT: Two different tests – Is the right Card in?

![Graph showing ACT vs Heparin concentration]

- LR-ACT: $y = 365.93x + 164.29$, $LR-\text{ACT } R^2 = 0.9832$
- HR-ACT: $y = 117.73x + 110.58$, $HR-\text{ACT } R^2 = 0.9945$
LMWH: Just Monitor anti-Xa?

CAP Survey: LMWH – Lots of Variability between labs

Decrease in clotting factors
Treat with FFP or cryoprecipitate. Hold anticoagulation

- $r = 11-14$ min: FFP 8 ml/kg
- $r > 14$ min, FFP 16 ml/kg

Primary fibrinolysis
(e.g. ϵ-aminocaproic acid)

Treat with anti-fibrinolytics

Primary fibrinolysis
High LY30

Coagulopathy/anticoagulants
Long R time

Reduced platelet function
Low MA

Hypercoagulable
Short R time, High MA

DIC
Stage 1 - hypercoagulable state with secondary fibrinolysis

DIC
Stage 2 - hypocoagulable state

Thromboelastography

MacLaren R. Pharmacotherapy 2007;27:93S-102S
Factors Correlating with Warfarin Dose/Complications

- Age
- Diet/Vitamin K stores
- Interacting Drugs/Herbs
- INR target
- CYP2C9 polymorphism
- Heart Failure
- Liver Impairment
- Infection/ Acute Illness
- Confusion of taking medications / Incorrect dose
- Quality of management
- Frequent INR values >3.0
Pearl – Difficult Warfarin Patient – New Start

- Elevated baseline INR, Organ Failure, Multiple Interactions etc
 - Give first dose of Warfarin as soon as possible –
 - Draw INR a far post dose as possible to unmask ↑ sensitivity

Also:
If a single result is unexpected – and not explained by the clinical situation
 - REPEAT IT
Thinking Ahead

It is Thursday and the patient wants to be treated for the DVT at home. Monday is a holiday

- How to start the warfarin
- Ability to receive the bridge therapy
- When will the first INR be drawn
It is Thursday and the patient wants to be treated for the DVT at home. Monday is a holiday

- How to start the warfarin
- Ability to receive the bridge therapy
- When will the first INR be drawn
Practice Pearl: Transitioning between agents

- What is the eminent thrombosis risk?
 - Device/Can’t be without (e.g. UFH to DTI)
 - Stop UFH and Start DTI at same time
 - Watch trend in (aPTT) movement to new target frequently
 - No immediate risk (UFH to LMWH/DOAC)
 - Why place pause? Do it in one step
 - Stop UFH when giving LMWH
 - Small change in level of anticoagulation should not cause thrombosis or bleed
Devices

- ECLS (VV/VA)
- Impella
- EKOS
- RVAD/LVAD
- Balloon Pump
- Dialysis
What do you “Monitor”

- Monitoring Pt
 - Bleeding/Thrombosis/Goals
- Laboratory
- Medication Administration
- Co-morbid condition changes

Pearl: If changes rapid and unclear, reassess more frequently. Adjust the orders to fit the patient needs. You can always make changes.
Renal Insufficiency

- Defining “Renal Failure” AKI vs CKD
 - CrCl Calculation approach (C and G equation using TBW)
 - Hemodialysis

- Thrombosis
 - Patient
 - Graft/Dialyzer

- Bleeding
 - Hgb reserve
 - Independent Risk Factor (Hemodialysis >>>>> below 30 ml/min)

Enoxaparin PI: (CrCl < 30 ml/min)
 - Prophylaxis: 30 mg q day
 - Treatment: 1 mg/kg/day
 - Patients < 20 ml/min not included

Dalteparin
 - No change > 20 ml/min

- Patients not included
Renal Insufficiency

- Defining “Renal Failure” AKI vs CKD
 - CrCl Calculation approach (C and G equation using TBW)
 - Hemodialysis
- Thrombosis
 - Patient
 - Graft/Dialyzer
- Bleeding
 - Hgb reserve
 - Independent Risk Factor (Hemodialysis >>>> below 30 ml/min)

Enoxaparin PI: \(\text{CrCl} < 30 \text{ ml/min} \)
- Prophylaxis: 30mg q day
- Treatment: 1mg/kg/day
- Patients < 20 ml/min not included

Dalteparin
- No change > 20 ml/min

Not all CKD/AKI Categories fit < 30 ml/min – HD never studied
No change > 20 ml/min

HD never studied
Anticoagulant “Reversal” Strategy

- Hold Anticoagulation
- Bleeding?
 • Site and severity – may influence outcomes
- Mechanical Intervention (Surgery)
- Pharmacological intervention
 • Topical Agents
 • Neutralize the drug
 • Reverse the effects of the drug independently
- Replace losses
- Optimize management of co-morbid situations
<table>
<thead>
<tr>
<th>Hemostasis Goal Time Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minutes to hours</td>
</tr>
<tr>
<td>Including trauma patients with ICH on oral anticoagulation</td>
</tr>
<tr>
<td>Hours</td>
</tr>
<tr>
<td>Hours to days</td>
</tr>
<tr>
<td>Reduce therapeutic target</td>
</tr>
<tr>
<td>(usually related to changes in risk acceptance)</td>
</tr>
</tbody>
</table>
How long for effects to be gone?

<table>
<thead>
<tr>
<th>Effect</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher Dose</td>
<td>Stop Infusion</td>
</tr>
<tr>
<td>Moderate Dose</td>
<td>Cp = Rate In/Rate Out</td>
</tr>
<tr>
<td>Low Dose</td>
<td>Time</td>
</tr>
</tbody>
</table>

AC Effect
Does the setting matter?

- **Emergency Department and ICU**
 - What is available and how long to get once ordered?
 - Can the necessary labs be done
 - PCC dosed on INR/Assessment – lowest effective dose
 - Can start their and always give more once INR reported.
 - Unclear if PCC alone vs surgery impacts ICH outcomes

- **Operating Room**
 - May depend on risk of thrombosis short and long term
 - How much reversal or hemostasis is needed
 - Ability to titrate depending on situation
 - What can be requested and administered rapidly
 - May not be able to wait for pharmacy to process